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Using a special approximation in the complex plane of the symbol of the kernel of the contact-problem integral equation, an 
asymptotic form of its solution is constructed which is the fundamental solution of the transient dynamic plane contact problem 
of the impact of a rigid punch with an elastic half-plane for short interaction times. The proposed approximation of the kernel 
symbol enables it to be approximated in the complex plane with any previously specified accuracy. Unlike existing approaches 
[I, 2, etc.], the approximation of the kernel symbol of the integral equation employed here enables the solution of this problem 
to be obtained in the form of simple formulae not containing singular quadratures. Q 1999 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM AND ITS INTEGRAL EQUATION 

Consider the plane contact problem of the impact of a punch of width 2a (1 x 1 s a) with an elastic half- 
plane (y Z= 0, I x 1 < -) with initial impression velocity v. and ignoring friction forces in the contact 
region. The shape of the punch and its law of motion in the elastic medium are defined by the function 
E(X, t)(l x I G a, t 2 0). At the initial instant, taking into account the fact that before impression the 
elastic medium is at rest, the displacements of the elastic medium u = u(x, y, t) and u = u(x, y, t) and 
their velocities are assumed to be zero. 

In the generally accepted notation of the theory of elasticity [2], the mixed boundary conditions of 
the contact problem when y = 0 (t > 0) have the form 

r 0, xy = --oo<x<= 

CYY = 0, --mcx<-a,acx<- (1.1) 

u= &(X, t), -ucx-ca 

with the condition that at infinity (4(x2 + y2) + -) the displacements u and u, together with their partial 
derivatives with respect to x and y, vanish. 

Using Laplace integral transformations with respect to time t [3] and a Fourier integral transforma- 
tion with respect to the longitudinal coordinatex (41, applied to the differential equations of the theory 
of elasticity [2] and to the mixed boundary conditions (l.l), taking into account the initial conditions 
and the conditions at infinity, the solutiotrof the contact problem can be reduced to the following integral 
equation 

~~L(t,~)k(5-x,p)d5=2ne’(x,p), 1xlSa 

k(t, p) = 7 K(a, p)e%fcX, K(o, P) = 
o&s: -a*) 

R(o, P) 

(1.2) 

R(a, p) = (a: + a*)(@ + 2l.t& - her*) - 4uCr20iOz 

0, =(a2+p2/Ci)K, oi =(a2+p2/c~)X, cl =[(h+2u)/p]% 

c* = (l& 

with respect to the unknown transformant &x, p) of the contract stresses, cp(x, t), which occur under 
the punch, and u,,,(x, 0, t) = cp(x, t). Here p is the density of the material of the half-plane, h and u are 
the Lame elastic constants [2] and 8(x,p) is the Laplace transform of the function E(X, t). 
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The following expressions are obtained for the Laplace transform of the vertical displacements ~L(x, 
y, p) and of the normal stresses oZ.(x, y, p) (y/> 0, --~ < x < oo) 

v L(x,y,p)=l---" T m L ~ ( = , P ) [ - a = ~ e - ° "  + ( ~  +ct2)G2 e-a2,] e-i°~ do~ 
zn _** ~ R(ot, p) 

GLvv(x,y,p)=2l.li ~ ~LF(oqp)[_20~2GlG2e-O,y +(GI 2 + ~2)(()~ + 21.t)G~ _ 

(1.3) 

-it~tx 

_~2)e_O2y ] e dt~ 
n(oq p) 

In Eq. (1.2) we have introduced the following notation (v is Poisson's ratio) 

P = c2p, ' 132 = c~ I c~ = (I - 2v)/[2(I - v)] 

In the inner integral of integral equation (1.2) we have made the substitution c~ = p'u, and in the 
outer integral we have made the substitutions ~ = a~' andx = ax'. As a result of these changes, integral 
equation (1.2) reduces to the dimensionless form (the prime is omitted) 

j ~L(~, p)k = 2•fL(x, p), I X I<~ 1 (1.4) 
-1 

k(t) = ~ K(u)ei'adu, K(u) = 2(1- ~2) 4 u2 
~2 + 

r no(U) 

Ro(U ) = (2u 2 + 1) 2 - 4u2 u U ~ +  1 ~ u  2 + [3 z 

fL ( x ,p )=2  (1--132)I.IEL(x,p. ), A =  c--~-2 
a ap 

Equation (1.4) was then multiplied by 2(1 - 132), and the contour of integration F in the complex 
plane u = o + ix makes an angle o f - a r g p  with the real axis (x = 0). 

2. T H E  A S Y M P T O T I C  S O L U T I O N  OF 
T H E  I N T E G R A L  E Q U A T I O N  FOR L A R G E  p 

The symbol of the kernel of integral equation (1.4), the fimction K(u), possesses the following 
properties: it is even with respect to u, real on the real axis of the complex plane u = G + ix, and the 
behaviour of K(u)at zero and at infinity is given by the relations 

K(u) =I u I -l +O(l u I-3), l U I "---) *~ (2.1) 

K(u) = K(0)+ O(u2), u ---) 0; K(0) = 213(1-132) (2.2) 

In the complex plane u = a + ix the function K(u) has four branching points u = __.i13 and u = _i, 
and two poles u = -+irl0 (Rayleigh poles) [5]. 

For a unique representation of the function K(u) in the complex plane u we make cuts which pass 
from the branching points u = i, u = i13 to i~ along the positive part (Imu >t 0) of the imaginary axis 
and from the branching points u = -i  and u = -/[3 to - i ~  along the negative part (Imu ~< 0) of the 
imaginary axis. In the plane cut in this way with deleted Rayleigh poles u = ---i~0, the function K(u) is 
analytic, including the poles I Ira(u) I < 13, 13 < 1 < q0. 

To construct the zeroth term of the asymptotic form of the solution of integral equation (1.4) for 
large values of p, it is sufficient to construct the zeroth term of the asymptotic form of the solution of 
(1.4) for small values of A. After deforming the contour of integration F in the complex plane u = 
+ ix into a contour parallel to the real axis (x = 0) and arranged in the strip I Im(u) < 13 [ < 13, the 
zeroth term of the asymptotic form of the solution of integral equation (1.4) for small A can be 
represented in the form of the superposition of solutions of the following integral equations [6] 
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using the formula 

~tpL_(~,p)k = 2~fL(x,p), - ~  <~ x ~ 1 (2.3) 
- I  

y tp~(t,p)k(~-~-A--X-)d~ =2rcfL(x,p), - ~ , < x < o o  

a o  

k(t) = ~ K(u)eiUtdu 

t f l + x  ~+ J l - x  "~ t.fx Pl 
(2.4) 

For this purpose, we have made the replacement of variables t = At '  - 1, x = Ax' - 1 and ~ = 1 - 
At ' ,  x = 1 - Ax', respectively, in the first two equations of (2.3), while in the third equation of (2.3) we 
have made the replacement ~ = At' ,  x = Ax'. 

As a result of these changes, Eqs (2.3) take the form (we have omitted the primes) 

~tp~(~,p)k(~ -x)d  t = 2rtfL(_+Ax -Y- 1, p)A -l, 0 ~< x < ,,o (2.5) 
0 

~tp t" (~, p)k(t - x)d~ = 2gf  I(Ax, p)A -I , - ~, < x < ~ (2.6) 

Equations (2.5) are the Wiener-Hopf equations on the half-axis, while (2.6) is the equation of convolu- 
tion on the axis [7]. 

The solution of integral equation (2.6) is obtained by applying a Fourier integral transformation to 
it and is given by the formula 

tp~(x, p) = ~ 7 fLF(u' p)exp(-iuX)du (2.7) 
2~A ~ K(u) 

The solution of integral equation (2.5) is obtained by applying a standard Wiener-Hopf procedure 
[9, 10] to it. The solution of the first integral equation of (2.5) can thereby be represented by the formula 

1 ~ g+(u)exp(-iux).d u 
tP+L(x'P) = " ~ _ _  K - - ~  (2.8) 

where g+(u) is a function that is regular in the upper half-plane (Im u > x_, 0 <~ I x_ I ~< [3) and is defined 
from the relation 

F÷(u) . F÷(u) = ~fL(A~- l ,p )exp( iu t )d  t (2.9) 
g+(u)+ g_(u) = AK_(u)' o 

while the functions K÷(u) and K_(u) are found by factorizing the function K(u) = K÷(u)K_(u); they are 
regular in the upper half-plane (Im u > x_, z_ ~< 0) and the lower half-plane (Im u < x+, z+ I> 0) of 
the complex plane u = a + ix, respectively. 

L The solution tO_ (x, p) of Eqs (2.5) is given by (2.8), in which F+(u) is given by (2.8) and (2.9), 
L but with the integrand replaced b y f  (-A~ + 1,p)exp(iut) in the formula for F+(u). 

After calculating the quadratures (2.7) and (2.8) and returning to the old variables, the zeroth term 
of the asymptotic solution of (1.4) is given by (2.4). In general, it is difficult to calculate quadratures 
of the type (2.8) in analytic form since K+(u) and K_(u) are given in singular quadratures [2] as a result 
of the factorization of K(u). 
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3. APPROXIMATION OF THE FUNCTION K(u) 
AND ITS FACTORIZATION 

To obtain an approximate solution of the integral equation of dynamic stationary and static mixed 
problems we used a method based on a special approximation of the symbol of the kernel K(u) of the 
integral equation along its axis of integration [6, 8-11, etc.]. We chose as the approximating function 
a function that could be factorized by elementary means and which enabled quadratures of the type 
(2.8) to be calculated in analytical form. It has been established [10, 11], that, by an appropriate choice 
of the approximating function, the error of the approximate solution of the integral equation does not 
exceed the approximation errors. 

When solving transient dynamic contact problems the need arises to choose a form of the approxi- 
mating function in the complex plane which will satisfy the above requirements and enable the physical 
meaning of the problem to be preserved in the solution. The usual methods of approximating the function 
in the complex plane, for example, the Pad6 approximation [12], do not satisfy this requirement. 

Here we will take as the approximation of the functions K(u), which satisfies all the above require- 
ments, a function Ko(u) of the following form 

Ko(u) = ~ +62 Mn(u) (3.1) 
u 2 + r12o 

The constants dk are found from the conditions for best approximation of K(u) in the complex plane 
u = o + ix. The Rayleigh poles __. ilq0 of the function K(u) are found from the equation Ro(u) = O. 

The function K0(u) in (3.1) is factorized, i.e. it is represented in the complex plane in the form 
Ko(u) = IC+(u)IC_(u), by elementary methods, and we then have 

~o ~" iu 

The functions K°+(u) possess the property 

K°(u) = K°_(-u) (3.3) 

and are regular in the half-planes Im(u) > -13 and Im(u) < ~ (13 > 0), respectively, with asymptotic forms 

KO(.)= l +,4" I lu i . * *  (3.4) 

K°(u) = K ~ " ~ +  O(u), l u I---> 0 (3.5) 

Note that the form of approximation (3.1). is not unique. 

4. THE ASYMPTOTIC SOLUTION OF INTEGRAL EQUATION (1.4) 
WITH THE APPROXIMATED KERNEL 

The solutions (pL(x, p) of the Wiener-Hopf integral equation (2.5) when the symbol of the kernel 
K(u) of this equation is replaced by the approximating function Ko(u) is given by the general formula 
(2.8), in which it is sufficient to substitute K"±(u), defined by (3.2), instead of K±(u). The zeroth term 
of the asymptotic solution of integral equation (1.4) is given by (2.4), after changing in (pL(x,p), (pL(x, 
p) to the old variables. 

For the case of a plane punch, when e(x, t) = e(t) and the right-hand side of integral equation (1.4) 
takes the form 

fL(x  ' p) = 2 (1 -- [~2)p£L (p) 
a 

where eL(p) is the Laplace transform of the function e(t), the solution (pL(x, p) of integral equation 
(2.6) can be represented by the formula 
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q)L**(x,p)= O~L(P) 0=2(1-1],2)!.1. (4.1) 
AK(0) ' a 

The solutions of integral equation (2.5) in this case are given by the formula 

~ L ( x , p ) =  °~L(P) 21tAK-O(0) _~ exp(-/ux) au (4.2) -iuK~ (u) 

When calculating the quadratures in (4.2)we make the replacement of variable -iu = s. In the complex 
plane s = u + i~ the integrand [sK~(/s)]-rhas singular points: at zero (s = 0)ma first-order pole and 
two algebraic-type branching points when s = -13 and s = -1. For a unique representation of the integrand 
of (4.2) in the complex plane s we make cuts from s = -[3 and s = -1 to,--~ along the negative part of 
the real axis, with a subsequent choice of the branches of the function '4(13 + s) and "4(1 + s) with the 
condition ~/1 -- 1. Evaluation of the integral in (4.2) leads to the formula 

o,L<p) r7 , = (pz (x, p) = 7 t ~ )  L Jl q(Xi (Y), y)dy + I q( Pn (Y), Y) cos[;(Y)Qn-I (Y)]dY + (4.3) 
- 13 

q(w,y) = O(y )exp ( -w-  yx), ;(y) = ~ - - ~ [ 1 -  y 

I n +1 2k+2 Xi(Y)=~ X (-1) #c d t ( ~ -  Y'~"ZI-I) 
1., k = O  ~ t 

1 Im Y-Tlo , Q n _ t ( y ) = . ~  (-X2(Y)) Pn(Y)=Re[-x2(Y)] O(y) = Y Y~-~o 

1 . 2 k + 2  

X2(Y) = ~ i ~ o d t ( i ~ - ' ~ -  l~- Y ) 

When returning to the old variables in (4.1) and (4.3) we take into account the fact that in this case 
the zeroth term of the asymptotic form of the solution of integral equation (1.4) is represented by formula 
(2.4). 

5. THE SOLUTION OF THE CONTACT PROBLEM FOR SMALL t 

The asymptotic solution of the contact problem in question for a plane punch for small t is obtained 
by changing to the originals of the Laplace transformation in (2.4), (4.1) and (4.3) (the solutions of 

L integral equation (1.4)). The originals of the functions tOL.(x,p), q)**(x,p), after reverting to the dimensional 
variable x in (4.1) and (4.3), are given by the formulae [13] 

-8  )~t E(t) (5.1)  (p**(x,t) = 2(1 2 
c2K(0) 

2 2 t 
)(1 - 13" )l.t [ Y . ~ [  f.<x,x)e(t-x)dt+b-~a-~-xE<t)] (5.2) 

~±(a+x,t)= nK~-(O)4c~(a+-x) [k=lbt ~ " - J 

E(t) = U(t) + e(O)~(t) 

fl (t, x) = H(t - t f  )×(t) exp(-ql (t, x)) 

f2 (t, x) = [ H(t - t~) - H(t - t~)]x(t) exp(-P. (t / t~)) cos(q2 (t, x)) 

t - t~ 

×(t) = t 4  t -  t? 

~l(t'x) =-~2 lt=O~(-1)k+ldk t, tf ) ' ~2(t'X) = t~ Qn-I -~ 
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t~ = a + x  (i=1,2), t~ =rlot~ :, b=  gK°(0) 
c i c2K(O) 

where H(t) is the Heaviside function, 8(0 is the Dirac delta function, Pn(t) and Qn-l(t) are defined in 
(4.3), and e(0) is the initial impression of the punch (before t = 0). The zeroth term of the asymptotic 
solution of the contact problem is defined by the formula 

9(x, t) = q%(a + x, t) + q0_(a - x, t) - q0** (x, t) (5.3) 

Formulae (5.1)-(5.3) enable us to analyse the dynamics of the contact stresses q0(x, t). The following 
is established by such an analysis: (1) the contact stresses are proportional to the rate of impression of 
the punch e'(t) until the arrival of waves from the edges of the punch (for all x ~ (clt - a, a - clt)), and 
then are added to them; (2) the contact stresses contain fixed singularities of the form (a + x) -v2 
which arise at the edges of the punch (x = _a) ,  and also mobile singularities at the wave fronts of the 
longitudinal waves (e(0) ~ 0), which propagate from the edges of the punch with velocity Cl, of the 
form (clt - (a +. x)) -v2, whereas a wave front of the transverse wave, moving with velocity c2(c2 < cl), 
has no singularities [1, 2]. 

In the special case when the punch is simultaneously impressed into the elastic medium at the initial 
instant t = 0 (in this case e(t) = eo(H(t)), the contact stresses are given by (5.3), in which 

tp.(x,t)  = 2(1-1] 2)ge 0 tS(t) (5.4) 
c2K(O) 

2 2 

xK~_(O)a[c2(a ± x) Lk=t / 
(5.5) 

while fk(t, x) (k = 1, 2) and b are given in (5.2). 
In the case of the approximation of Ko(u) of the form (3.1) for n = 0 in the case considered the 

formulae for solving contact problem (5.3)-(5.5) take the simplest form, since they do not contain 
quadratures, while f~(t, x) are given by the formulae 

f l ( t ,x)= H(t_t2)×(t)exp I. do(1-~2)t~ 2. ] 

The function ×(t) is given in (5.2). 
If the constant of the approximation do is determined from the condition K(0) = K0(0), we 

have 

d o = ln(rl~)K(0)~ -I )/(1 - ~f~)2 

The error of this approximation (n = 0) for all v ~ [0; 0.44] along the real axis (x = 0) of the complex 
plane u = a + ix does not exceed 4%, while over the whole range v ~ [0; 0.5] it does not exceed 22%. 
The increase in the approximation error as v ---) 0.5 is due to the fact that the material of the half-plane 
becomes incompressible and K(u) takes a qualitatively different mathematical form when v = 0.5: the 
analytic expression for the function contains only one algebraic root. 

The formulae obtained for the contact stresses enable one to construct the wave field of the 
displacements and stresses in an elastic medium. To do this one can use the Cagniard-de Hoope 
method [2, 14] to evaluate the integrals in (1.3). The formula for representing the wave field of the 
normal stresses ayy(X, y, t), after using the Cagniard--de Hoop method to evaluate the integral in (1.3), 
takes the form 
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= ~t e ' ( t -  Y 414(1-~2)1X ~ ~ j H : ( x ' x ) a ( x - t ) d x  
%';' c2B t. c~ c2K_°(0) k=,o~t,?. (5.6) 

and contains four integrals, since Hff denotes that either H~ or Hk is taken alternately. We have 
introduced the following notation 

+ [ 1 ( s 2 - ~ )  2 ds I ' S~=I13(xc'(a+x)-YP~l)~2'. + -2 Y~'¢cl>_ <~r+ 
Hi-(t 'x)=Im "Y-sK°(+is) R(s) ~ ., .=s~ [13(xcj(a++.x)+typ'(2)r+_ , xc I ~ r+_ 

H;(t ,x)  = Irn -T- KO+(+_is ) R(s) ~ s=S~ 

P.~,i = ((-1)i+'(r~ -x2c.2,)) ½, m,i = 1,2; 

l • -2 
S~ = (xc2(a+ x ) -  yP2t)r± ' 

• + -2 [(xc 2 (a + x) + ~YP22)r+- , 

r+- = ((a + x) 2 + y2))6 

y <~ "~c 2 <~ r+_ 

xc 2 >~ r+ 

R(s )=(d-~)2  +s~,~2, ~, =l~ri-5-fi-~ ~, c2 =~/132_52 

r+ + IF+_/c2, COS0 < 13 

t l = c l  [ -~ (a+x) -y41-132 ,  cos0 > 13 x 
~ ,  i f =  , 0 = arctg y 

The function K°+(u) is given by (3.5) for the general case of the approximation. Formula (5.6) enables 
us to give a geometrical picture of the stress wave field Dry(x, y, t) and to indicate features on the wave 
fronts of elastic waves in an elastic half-plane [2]. 

6. T H E  M O T I O N  OF A P U N C H  IN AN E L A S T I C  M E D I U M  

The impression of a plane rigid punch e(t) into an elastic half-plane can be determined from the 
differential equation (the punch is represented by a point mass M), with initial conditions 

M~(t) = Q(t); e(0) = e 0, ~(0) = v 0 (6.1) 

where Q(t) is the elastic resistance force of the medium. 
To determine the Laplace transform of the elastic resistance force of the medium 

QL (p) = _ i tpL (X, p)dx 
--tl 

we will use the zeroth term of the asymptotic form tpL(x, p) of the solution of integral equation (1.4). 
To do this we take the asymptotic solution of the integral equation for small t in the new multiplicative 
form [61 

(6.2) ~(x, p) = ~L+(a + x, p)~L(a- x, p)/~pL(x, p) 

the realization of which leads to the formula 

ioo+c 
K(O) 1 So~2(iu)exp(Tu)du 

QL(p) = -2(1 - l~2)laa K_(0) 2r~i -i**+c 

co(iu) = -(uK°(iu)) -1, y = 2/A, Rec > 0 

The functions K°_~(u) are given by (3.5). 
For t < 2a/cl, formula (6.3) takes the form 

QL(p)= 2(1-132)P-K(0)[ 2ap 2 ~ ) ] ~ L ( p )  
K_(O) [_czKZ+(O) +( ) 

(6.3) 

(6.4) 

From the solution of (6.1) we obtain, by means of a Laplace transformation using expression (6.4) 
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Table 1 

No. Material la X 1010, N/m Io x 103, kg/m 2 v max e, mm t. x 104, s 

1 Aluminium 2.5 2.7 0.35 2.16 1.21 
2 Granite 4.0 3.0 0.10 1.15 0.62 
3 Copper 3.0 8.9 0.35 1.82 1.06 
4 Steel 8.0 7.7 0.25 1.24 0.71 
5 Glass 2.9 2.5 0.20 2.13 1.17 
6 Cast iron 4.4 7.0 0.25 1.60 0.90 

Cop + v o = I -ta 
i ~ l ' ( p ) = ( p + u , ) 2 + ~ , ,  u, 15C2 M 

~i, = , I't~° - u 2, ~o = "X/~"qo In[2(1 - 132)'q2] + 215 _ rio 
M15211O 

(6.5) 

Calculations show that 8. > 0 for all v ~ [0; 0.44], i.e. for those values ofv  for which the approximation 
Ko(u) given by (3.1) for n = 0 allows of an error of less than 4% for K(u) along the real axis. For such 
values of v, the value of the impression of the punch takes the form (e0 = 0) 

e(t) = ~ exp(-u.t) sin ~ (6.6) 

The depth of maximum impression of the punch into the elastic medium is then given by the formula 

v00, ( a r c t g 0 , )  0,  
maxe(t,) = .~8,(1 + 0 , )  exp ; (6.7) 

t , =  l___.~aretg ~ * ,  0 , =  u" 
4s.  u. 4g;-. 

where t, is the time of maximum impression, found from the condition e(t,) = 0. 
Using (6.7) we calculated maxe and t, for M = 200 kg, a = 1 cm, and v0 = 30 m/s. The results are 

given in Table 1 for various materials with an indication of their characteristics [14], used in the 
calculations. 

I wish to thank V. M. Aleksandrov for his interest. 
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